Visualization & Quantification of Cerebrovascular Network Changes in a Hemorrhage Stroke-Prone Animal Model

MEMORIA

Olivia Perry¹, Michael Doschak², Benjamin O'Croinin², Conor O'Croinin², Noriko Daneshtalab¹

¹School of Pharmacy, Memorial University of Newfoundland ²Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta

Introduction & Intention

- Hemorrhagic stroke is associated with high mortality, morbidity and disability - with a 1-year mortality rate of up to 58%¹.
- Visualization and quantification of the changes in cerebrovascular microcirculation, that occur as part of hemorrhagic stroke is needed as foundation to support development of novel treatment agents.
- Micro-Computed Tomography (micro-CT), coupled with a radiopaque contrast agent, can produce 3D reconstructions of the vascular network at a resolution sufficient to resolve small blood vessels, while leaving the tissue intact for subsequent analysis.
- The imaging power of this technique is advanced even further when coupled with a fluorescent imager (GE/ART Optix) and dye, allowing the exact site of stroke to be identified.

Onset of

Hypertension

Onset of

Stroke

(3)

13-15 weeks

Methods

(3) Figure 1: SHRsp timeline 5 weeks 9-10 weeks

Birth

- Uncontrolled hypertension is the leading controllable factor contributing to hemorrhagic stroke in humans², thus use of a spontaneously hypertensive stroke-prone (SHRsp) animal model is translatable.
- Evan's Blue (EB) Dye (30mg/kg) was infused through the femoral artery prior to fixation with 4% PFA
- Vascupaint™ (VP) Medilumine, a bismuth vanadate latex casting agent, was then infused via the aortic arch at 1.0mL/min until first sign of yellow coloring observed in key indicator regions (Figure 2), followed by 0.5mL/min until 6ml depleted, to opacify vasculature

Figure 2: Key Indicators of VP Perfusion to Brain. Conjunctival/ episcleral vessels (left) & exterior nares/sublingual vasculature (right)

- 9 µm resolution produced image projections were reconstructed using the bundled SkyScan 1176 software (Bruker) NRecon program to create >3000 coronal slices
- Region of interest (ROI) of 500 slices surrounding the middle cerebral artery (MCA), as it is the most common location for stroke - was analyzed using CTAn.
- For brains with a non-MCA stroke site (n=5), stroke-specific ROI were also analyzed. Corresponding anatomical sites in age/sex matched pre-stroke brains ware used as controls

Figure 4: Macroscopic **Fluorescent** Dorsal Images of Non-MCA Infarct Sites

Figure 5: Coronal Slices Central Vascular Dysfunction 87M pre-stroke (left) 100M post-stroke(right)

were used as controls.					Och was a Di
able 1: Micro-CT lata	Pre-Stroke (n=12)	Post-Stroke (n=12)	Pre-Stroke (n=5)	Post-Stroke (n=5)	Results
	MCA ROI		Infarct ROI		Interpretation
ercent Vessel Olume	2.937 ± 0.822		9.941 ± 3.575 8.174 ± 0.214 p = 0.36		% of the total volume that is vessel - ↓ in post-stroke due to vasoconstriction and intact vessels
ractal Dimension	1.888 ± 0.117		1.296 ± 0.217		Indicator of surface complexity - how the object surface fills space - ψ in post-stroke because less intact vessels
uler Number	933.6 ± 232.0 695.4 ± 331.9 p = 0.26		466 ± 153.7 451 ± 104.9 p = 0.88		Indicator of redundant connectivity - the numb connections holding object together - ψ in post-stroke due to less intact vasculatur
'essel hickness (μm)	4.846 ± 0.806 p =	3.468 ± 0.524 0.01	9.503 ± 1.831 p =	4.120 ± 1.176 001	- \downarrow in post-stroke due to vasoconstriction
				The second second	- mintle course.

n=24 total: n=12 pre-stroke & post-stroke (n=6 male & female in each). Post-stroke brains exhibited EB extravasation and decreased VP as evidenced perfusion, fluorescence & micro-CT respectively

Figure 3: Rat 61F pre-stroke macroscopic (A), micro-CT (B); Rat 93F post-stroke macroscopic(C),

Future Directions Vessel Volume

- In-vivo imaging using the established method
- Immunohistochemistry markers of angiogenesis -Introduction of antihypertensive drugs
- 1. Smajlović et al. 2006. Basic Med Sci. (3):17-22.
- 2. Wajngarten et al. 2019. Eur Cardiol. v.14(2)

micro-CT (D) Acknowledgements: Atlantic Indigenous Mentorship Network Kausattumi Graduate Grant, Canada Foundation for Innovation, PORL Lab University of Alberta